Two Melting Antarctic Glaciers Could Decide the Fate of Our Coastlines

Rapid cuts in greenhouse gases, however, showed Antarctica remaining almost completely intact for hundreds of years.

Pollard and DeConto are the first to admit that their model is still crude, but its results have pushed the entire scientific community into emergency mode.

“It could happen faster or slower, I don’t think we really know yet,” says Jeremy Bassis, a leading ice sheet scientist at the University of Michigan. “But it’s within the realm of possibility, and that’s kind of a scary thing.”

Scientists used to think that ice sheets could take millennia to respond to changing climates. These are, after all, mile-thick chunks of ice.

The new evidence, though, says that once a certain temperature threshold is reached, ice shelves of glaciers that extend into the sea, like those near Pine Island Bay, will begin to melt from both above and below, weakening their structure and hastening their demise, and paving the way for ice-cliff instability to kick in.

In a new study out last month in the journal Nature, a team of scientists from Cambridge and Sweden point to evidence from thousands of scratches left by ancient icebergs on the ocean floor, indicating that Pine Island’s glaciers shattered in a relatively short amount of time at the end of the last ice age.

additional resources
address
advice
agree with
anchor
anonymous
are speaking
article
article source
at bing
at yahoo
basics
best site
blog
bonuses
breaking news
browse around here
browse around these guys
browse around this site
browse around this web-site
browse around this website
browse this site
check
check here
check it out
check out here
check out the post right here
check out this site
check out your url
check over here
check these guys out
check this link right here now
check this out
check this site out
click
click for info
click for more
click for more info
click for source
click here
click here for info
click here for more
click here for more info
click here now
click here to find out more
click here to investigate
click here to read
click here!
click here.
click now
click over here
click over here now
click this
click this link
click this link here now
click this link now
click this over here now
click this site
click to find out more
click to investigate
click to read
clicking here
company website
consultant
content
continue
continue reading
continue reading this
continue reading this..
continued
conversational tone
cool training
Get the facts
Related Site
Recommended Reading
Recommended Site
describes it
description
dig this
directory
discover here
discover more
discover more here
discover this
discover this info here
do you agree
enquiry
experienced
explanation
extra resources
find
find more
find more info

The only place in the world where you can see ice-cliff instability in action today is at Jakobshavn glacier in Greenland, one of the fastest-collapsing glaciers in the world. DeConto says that to construct their model, they took the collapse rate of Jakobshavn, cut it in half to be extra conservative, then applied it to Thwaites and Pine Island.

But there’s reason to think Thwaites and Pine Island could go even faster than Jakobshavn.

Right now, there’s a floating ice shelf protecting the two glaciers, helping to hold back the flow of ice into the sea. But recent examples from other regions, like the rapidly collapsing Larsen B ice shelf on the Antarctic Peninsula, show that once ice shelves break apart as a result of warming, their parent glaciers start to flow faster toward the sea, an effect that can weaken the stability of ice further inland, too.

“If you remove the ice shelf, there’s a potential that not just ice-cliff instabilities will start occurring, but a process called marine ice-sheet instabilities,” says Matthew Wise, a polar scientist at the University of Cambridge.

This signals the possible rapid destabilization of the entire West Antarctic ice sheet in this century. “Once the stresses exceed the strength of the ice,” Wise says, “it just falls off.”

And, it’s not just Pine Island Bay. On our current course, other glaciers around Antarctica will be similarly vulnerable. And then there’s Greenland, which could contribute as much as 20 feet of sea-level rise if it melts.

Next to a meteor strike, rapid sea-level rise from collapsing ice cliffs is one of the quickest ways our world can remake itself. This is about as fast as climate change gets.

Still, some scientists aren’t fully convinced the alarm is warranted. Ted Scambos, lead scientist at the National Snow and Ice Data Center in Colorado, says the new research by Wise and his colleagues, which identified ice-cliff instabilities in Pine Island Bay 11,000 years ago, is “tantalizing evidence.” But he says that research doesn’t establish how quickly it happened.

Leave a Reply

Your email address will not be published. Required fields are marked *